A USEFUL SYNTHON FOR ELABORATION INTO IRIDOIDS AND ALKALOIDS ${ }^{1}$

Ken C. Mattes, Mong T. Hsia, C. Richard Hutchinson*, and Steve A. Sisk
School of Pharmacy, University of Wisconsin, Madison, WI 53706 USA
(Received in USA 20 June 1977; received in UK for publication 18 August 1977)
We are developing a general biomimetic synthesis of camptothecin (1), its analogs ${ }^{2}$, and other medicinally important indole alkaloids, in which a key synthon is secologanin (2a) or a structurally similar compound. Although $2 a$ is an abundant, easily isolable compound ${ }^{3}$, its versatility as a synthetic intermediate is somewhat limited due to the difficulty in removing its giucosyl substituent in good yield and without extensive rearrangement of the aglucone ${ }^{4}$. Thus, we have developed an efficient synthesis of $2 b^{5}$ and of a synthon (7) that should be capable of elaboration tc 3,4 -dihydroanalogs of 2 b , to $\underset{\sim}{1}$, and to other indole alkaloids along already established lines ${ }^{2,6}$. Since this synthon appears to be generally useful, we are reporting its synthesis herein.

1

2a, $\quad R=D-g l u c o s e$
$2 b, \quad R=M e$

Our approach involves a Diels-Alder reaction of 2 -methoxy-5-oxo-5,6-dihydro-2H-pyran (4) with butadiene followed by a one-carbon homologation to a $C(11)$ nitrile. The latter then can be converted into an amide, acid, or methyl ester (Scheme).

The synthesis of 5 initially was attempted according to Jones ${ }^{7}$; contrary to his report, treatment of the Diels-Alder adduct of 3_{\sim}^{8} under a variety of acetalization conditions gave a mixture of $\underset{\sim}{5}$ and its $C(4)$ ketal, the latter usually predominating. Consequently, we prepared $4 \underset{\sim}{4}$ according to Torii et al. ${ }^{9}$, from which $\frac{5}{7}$ (m.p. $75^{\circ} \mathrm{C}$) could be prepared directly in moderate yield ${ }^{10}$ using the conditions reported by Jones ${ }^{7}$ (excess butadiene, DME, $90-110^{\circ} \mathrm{C}$). In this manner only one $C(1)$ epimer of $\underset{\sim}{5}$ was obtained, in contradistinction to the ca. 1:1 mixture of $C(1)$ epimers obtained by the method of Jones ${ }^{7}$.

The one-carbon homologation of 5 was attempted by several methods before a sultable route was found. Conversion of $\underset{\sim}{5}$ to its ketenedithioacetal (11) by reaction with 2-1ithio-2-trimethyl-silyl-1,3-dithiane ${ }^{11}$ proceeded well (85% yield), but subsequent hydrolysis ${ }^{11}$ to the C(11) carboxyl or carbomethoxyl group could not be achieved in good yield. We attribute this difficulty

Scheme

3, $\mathrm{R}=\mathrm{H}$
5
$\underset{\sim}{6}$
4, $R=M e$

11

$\underset{\sim}{12}$
to the acid sensitive acetal and nucleophilic nature of the $C(7)$ double bond of 11 . Similarly, the use of tosylmethylisocyanide, an established reagent for one-carbon homologation of aldehydes and ketones ${ }^{12}$, was unsuccessful for preparation of 7. However, the desired homologation was smoothly achieved in 70% overall yield by the method of Ziegler and Wender ${ }^{13}$ via the carbomethoxyhydrazone (6): $\underset{\sim}{6}-\mathrm{m} . \mathrm{p} .170-171^{\circ} \mathrm{C}$; ir (KBr), v, $3180,3120,2998,2876,1715$ and $1680 \mathrm{~cm}^{-1}$; $\mathbf{1}_{\mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta, 1.80-2.90(\mathrm{~m}, 6 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.27\left(\mathrm{AB} \mathrm{q}, \mathrm{J}=15 \mathrm{~Hz}, \mathrm{CCH}_{2} 0\right), 4.62$ $\left(\mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{CHCH}\right.$), $5.70(\mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{CH})$, and 7.83 (br s, NH) ppm. 6a: m.p. $44.5-46^{\circ} \mathrm{C} ;{ }^{1} \mathrm{I}_{\mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right), \delta, 1.80-2.60(\mathrm{~m}, 6 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.81(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CCH}-2), 4.29(\mathrm{~d}$, $\underline{J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{br} \mathrm{s}, \underline{J}<1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHN}), 5.71(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, and $6.27\left(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NNHCO}_{2}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right), \delta, 25.55(\mathrm{~d}, \mathrm{C}-5, \mathrm{C}-10), 34.96,36.55(\mathrm{dt}, \mathrm{C}-6, \mathrm{C}-9), 52.85$ ($\mathrm{q}, \mathrm{C}-1 \mathrm{OMe}$), $54.95\left(\mathrm{qCO}_{2} \mathrm{Me}\right), 62.67(\mathrm{~d}, \mathrm{C}-3)_{2} 62.02(\mathrm{~s}, \mathrm{C}-4), 98.84(\mathrm{~d}, \mathrm{C}-1), 118.76(\mathrm{~s}, \mathrm{cN}), 123.4,125.6(\mathrm{t}, \mathrm{C}-7, \mathrm{C}-8)$, and 158.8 ($\mathrm{s}, \mathrm{C}=0$) ppm. 7a - m.p. $56.5-57.5^{\circ} \mathrm{C}$; ir (KBr), $\nu, 3035,2920,2845,2240$, and $1660 \mathrm{~cm}^{-1}$;
 $12 \mathrm{~Hz}, \mathrm{CHCH}_{2} 0$), 4.58 (br s, 1H), and 5.64 (br s, 2 H) $\mathrm{ppm} ; \mathrm{ms}, \mathrm{m} / \mathrm{e}, 161.0837$ ($\mathrm{M}^{+}-\mathrm{MeOH}$ calcd 161.0847 for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$). 7b - m.p. $77-78.5^{\circ} \mathrm{C}$; ir (KBr), $v, 3030,2925,2840$ and $1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta, 1.20-2.80(\mathrm{~m}, 7 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.86,3.89(\mathrm{~d} \mathrm{AB} \mathrm{q}, \mathrm{J}=8,11 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~d}$,
$\underline{J}=3 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}, \mathrm{m} / \mathrm{e}, 161.0836\left(\mathrm{M}_{-}^{+}-\mathrm{MeOH}\right)$. The preferential formation of 7 a is consistent with addition of HCN to 6 a from the least hindered beta face followed by predominantly kinetic protonation of the C (4) carbanion during base catalysed decomposition of the cyanodiazene carboxylate ${ }^{13}$. TLC and ${ }^{13} \mathrm{C}$ NMR data failed to exhibit any evidence for the presence of two HCN adducts of 6 , however.

The synthon represented by 7 was readily transformed into 8,9 , and 10 as follows: 8a reflux 27 hr in aq. ethanol containing BioRad AG-1-X4 (OH^{\ominus}) ion exchange resin; 92\%; m.p. 156-
 EtOH ($1: 1$); 85%; m.p. $160.5-163^{\circ} \mathrm{C}$; ir (KBr), v, $3450 \mathrm{br}, 3025,2910,2840,2650 \mathrm{br}$, and $1710 \mathrm{~cm}^{-1}$. 10a - treatment of ga with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$; (60%); oil; ir (CHCl_{3}), $v, 1730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right), \delta, 1.4-2.6(\mathrm{~m}, 7 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{CH}_{3}\right) 3.72,3.82(\mathrm{~d} \mathrm{AB} \mathrm{q} 2 \mathrm{H}),, 4.48(\mathrm{~d}$, $\underline{J}=5 \mathrm{~Hz}, 1 \mathrm{H}$) and $5.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$. Direct hydrolysis of 7 a to 9 a under strongly basic conditions gave predominantly the ring opened compound 12 resulting from beta elimination, which is why a two-step reaction sequence was chosen. Thereby the formation of diene 12 was reduced to a minor amount. Attempted methanolysis of $\underset{\sim}{7 a}$ to $\underset{\sim}{10}$ using dry HC1 gas and methanol gave apparent rearrangement products (20\%) plus the C(1) hemiacetal of 7 (60%), although this method worked well for the conversion of cyclohexyl nitrile to 1-carbomethoxy cyclohexane.

The analogous derivatives of $\underset{\sim}{7}$ were also obtained using identical reaction conditions: $8 b$ 78%, m.p. $153-156^{\circ} \mathrm{C}$; ir (KBr) , $\nu, ~ 3390,3175,3020,2910,2835$, and $1660 \mathrm{~cm}^{-1}$. $9 \mathrm{~b}-72 \%$; m.p. $68-71^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}), v, 3400 \mathrm{br}, 3020,2910,2850,2650 \mathrm{br}$, and $1710 \mathrm{~cm}^{-1}$. $10 \mathrm{~b}-70 \%$; ir (CHCl_{3}), $\nu, 1730 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta, 1.5-2.6(\mathrm{~m}, 7 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d} \mathrm{AB} \mathrm{q}, 2 \mathrm{H})$, $382,4.48(\mathrm{~d}, \underline{\mathrm{~J}}=3 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) \mathrm{ppm}$.

The utility of $\underset{\sim}{9}$ for the synthesis of $\underset{\sim}{1}$ is being explored, based on the methodology of van Tamelen ${ }^{6 b, c}$. Using a similar approach it should be possible to employ 10 in the synthesis of geissosch1zine ${ }^{6 b}$ and ajmalicine ${ }^{6 d}$.

References and Notes

1. This research was supported by the National Institutes of Health research grant CA 17127-03 and career development award to C. R. H. (CA-00253-01).
2. C. R. Hutchinson, M. T. Hsia, A. H. Heckendorf, and G. J. o'Loughlin, J. Org. Chem. , 41, 3493 (1976).
3. I. Souzu and H. Mitsuhashi, Tetrahedron Lett., 191 (1970).
4. R. T. Brown and C. L. Chapple, Tetrahedron Lett., 787 (1976); G. Kinast and L. F. Tietze, Chem. Ber., 109, 3640 (1976).
5. In collaboration with M. Uskokovic and J. A. Partridge, Hoffmann-LaRoche Inc. To be published elsewhere.
6. cf. (a) E. Winterfeldt, M. Boch, T. Korth, J. M. Nelke, D. Pike and H. Radunz, Chem. Ber., $\underline{\underline{105}}$, 2126 (1972; (b) K. Yamada, K. Aoki, T. Kato, D. Uemura and E. E. van Tamelen, J.C.S. Chem. Commun., 908 (1974); (c) E. E. van Tamelen and C. Dorschel, Bioorganic Chem., 5, 203 (1976); (d) F. A. MacKellar, R. C. Kelley, E. E. van Tamelen, and C. Dorschel, J. Amer. Chem. Soc., 95, 7155 (1973).
7. G. Jones, Tetrahedron Lett., 2231 (1974).
8. O. Achmatowicz, Jr., P. Bukowski, B. Szechner, Z. Zweirzchowska, and A. Zamojski; Tetrahedron Lett., 27, 1973 (1971).
9. S. Torit, H. Tanaka, T. Anoda and Y. Simizu, Cnemistry Letters, 495 (1976). We obtained only one $C(1)$ epimer of $\underset{\sim}{4}$, rather than the mixture reported by these authors.
10. Methods to raise this yield are under investigation.
11. cf. P. F. Jones, M. F. Lappert and A. C. Szary, J.C.S. Perkin I, 2272 (1973); F. A. Carey and J. R. Neergaard, J. Org. Chem., 36, 2731 (1971); F. A. Carey and A. S. Court, ibid, 37, 1926 (1972) .
12. U. Schollkopf and R. Schröder, Angew. Chem. Internat. Edit., 12, 407 (1973); 0. H. Oldenziel and A. M. van Leusen, Tetrahedron Lett., 1357 (1973).
13. F. E. Ziegler and P. A. Wender, J. Amer. Chem. Soc., 93, 4318 (1971); J. Org. Chem. , 42, 2001 (1977).
